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Introduction

This paper was written for researchers and educators interested in integrating

Computational Thinking (CT) into disciplinary education. We describe a new

construct called “Decoding”: why it was developed, which theories and practices it

builds upon, how it was developed, how it compares and contrasts with other CT

integration approaches, and how it is being implemented and studied in a variety

of educational settings. We hope this provides the reader with the foundations for

incorporating Decoding in future teaching and research. The research endeavor is

one of exploration, inquiry, and discovery. Much of what we now think about

Decoding has taken form in the years 2019-2023. The theory of Decoding: what it

is and how it might work on a cognitive level, has come together over the four

years within three different research projects. We are eternally grateful to the

communities of students, teachers, and STEM education researchers who helped

us learn about Decoding as they took part in professional development

workshops, out-of-school time summer camps, and/or classrooms where the

Decoding Approach was implemented and tested.

The Decoding Approach to CT Integration

The integration of computational thinking in education has been promoted by both

national computer science education and science education associations

(Computer Science Teachers Association, 2011; National Governors Association,

2010; National Research Council, 2012; NGSS Lead States, 2013). Over the past 10

years, researchers have embarked on projects to engage students in CS and CT

through integration in core subjects as a means to prepare students with the

knowledge, skills, and practices for future endeavors in science and computing

fields (Basu et al., 2016; Lee et al., 2011; Schanzer et al., 2018; Sengupta et al.,

2013; Swanson et al., 2019). This strategy of integrating CT in disciplinary classes

aims to bypass some of the difficulties associated with offering stand-alone CS/CT

courses as a new subject to an already crowded school day.

There are many potential benefits of using an integrated approach in Science

classes. Since science classes are mandated for all students, integrating CS and
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CT in Science classes serves as a way to introduce all students to CS in an

equitable fashion (Lee et al., 2017). Interjecting CS and CT into science classes

drives the modernization of science curriculum to reflect modern scientific

practices such as computer modeling and simulation (Foster, 2006; Sengupta et al.

2013; Tedre and Denning, 2016; Weintrop et al., 2016). The integration also aspires

to raise teachers’ and students’ awareness of the relevance of CS and CT in

science and how CS and CT have been key to scientific discovery. Importantly, the

integration of CS and CT in science has potential to deepen students’

understanding of scientific processes through investigation of mechanisms, or

parts of a system working together to generate a phenomenon, abstracted in

computer models (Arastoopour Irgens et al., 2020; Schwarz et al., 2014, Wilkerson

et al., 2015, 2018).

Yet, past efforts to integrate CS/CT in science through a “programming first” in

which students learn computer programming to enable them to build models of

phenomena have had mixed results. While there are numerous potential benefits

of this approach, there have been substantial challenges encountered during its

implementation. There is a steep learning curve for science teachers to learn CS

and pedagogies for engaging students in CT-rich activities, and gain confidence in

teaching computer programming. Science teachers often do not see the “fit”

between building computer models and goals for science learning. They have

difficulty finding instructional time in a crowded science curriculum to teach CS

content and CT practices, especially computer programming. Furthermore, since

CS and CT topics and skills are not yet tested in standardized assessments, their

value is not currently measured or used to assess teaching. It is within this context

that the Decoding Approach was developed as a way to deeply engage in CT

without the barriers encountered with expecting students to program models.
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A Short History of Decoding

The first conception of Decoding emerged within Project GUTS: Growing Up

Thinking Scientifically, an NSF-funded afterschool program that engaged teachers

in professional development and youth in making and then using computer

models and simulations as tools for scientific inquiry. In the article “Computational

Thinking for Youth in Practice”, Lee et al. (2011) described a three-stage

progression for engaging youth in Computational Thinking (CT) that was found to

be successful in Project GUTS. The progression, called Use-Modify-Create (or

UMC for short), describes a pattern of engagement that was seen to support and

deepen youths’ acquisition of CT. The Use-Modify-Create progression is based on

the premise that scaffolding increasingly deep interactions will promote the

acquisition and development of CT. In the “use” stage, students are consumers of

someone else’s creation. For example, in the context of a computational science

investigation, students run experiments using pre-existing computer models as

experimental test beds. Over time they begin to “modify” the model to incorporate

new features or change existing features. Through a series of modifications and

iterative refinements, the student is in the “create” stage and what was once

someone else’s model now becomes one’s own.

While there were many successes in supporting students’ CT with the UMC

approach, we found that there was a lot of room for improvement. Through early

research on Project GUTS (Lee, 2009), we found that student learning gains were

primarily in the areas of CT and agent based modeling, and not in grade-level

appropriate science content learning. One observation was that students, when

making modifications to their models, were not seeking to make scientifically valid

models; imaginary scenarios wherein agents carried out magical behaviors were

equally valued by students. Researchers also noticed that student modifications

varied in their sophistication. There were modifications that reflected students’

comfort with making changes to code. Student modifications ranged from

changing the value of a variable in code (changing a number) to implementing

whole new procedures to implement agents’ behaviors. Additionally, there were

modifications that ranged from non-mechanistic, such as changing the color or

shape of an agent or some other purely visual change that would not impact how

the system works, to mechanistic, such as changing an agent’s conditional

behavior in a way that can impact the generation of a phenomenon. This type of
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mechanistic change was evidence of students’

ability to think mechanistically about

phenomena. Thus, through the decoding

approach, we were attempting to increase

students’ science learning through their

gaining of a mechanistic understanding of

processes in scientific models (what causes

what) rather than through engaging students

in creating their own models through

programming.

Prior to modifying models within the Project

GUTS curriculum, it was necessary for

students to explore and understand the code

within the model prior to making modifications.

We initially called this type of analysis

“Decoding” but have since refined its

definition. At that time, when students were

asked to decode, we were asking them to

describe how an agent’s state, typically its

position and direction, changed as the code

was executed. For example, in Project GUTS’

Water Resources module, students were

asked to explain the code and what it caused

the water droplet to do. In reviewing these

blocks of code, we ask students to play the

role of the water droplet and interpret the

code and act according to what the code

instructs you to do. As each block is executed, the student was supposed to

describe where the water molecule was in space, as x- and y-coordinates, and

which direction it was heading as described below.

When asked to decode this procedure at the left, we expected students to note

that the water droplet will get moved when it encounters the yellow part of the

pump. The water droplet gets re-positioned at the top of Spaceland with a random

x position and a y position at y = 50 (at the top of the window) and a new water

droplet is created before the existing water droplet gets deleted. We did not ask
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what this process represented in science (that the water droplet gets pumped,

(used for some purpose), then goes into the atmosphere.)

Then, in another procedure called “evaporation” shown to the bottom left, we

expected students to note that if the water droplet is on a cyan colored part of the

terrain, it was to turn so it headed down, and take 5 steps forward. Additionally,

there was a small chance that the water droplet will get smaller in size, and if the

water droplet gets very small, it gets removed. It is important to note that we did

not ask students to link these encoded processes to anything in the real-world. We

could have explicitly linked the terrain being cyan to the sky, the heading down

and taking steps forward to be precipitation, and the reduction of the size of the

water droplet as evaporation.

Through investigating learning outcomes of the UMC progression (Lee, Hsiao &

Anderson, 2020), and responding to the feedback provided by science teachers

who were implementing the Project GUTS curriculum, it became clear that while

the Project GUTS curriculum was a powerful means to engage in CS and CT, it was

not significantly improving

students’ science

learning. Thus,

researchers and

curriculum designers

sought to deepen the

links between CT,

computer modeling, and

science in the curriculum

and to identify

opportunities that were

being overlooked.

Figure 1. Diagram steps in

decoding.
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Decoding Explained

In 2019, Lee hypothesized that to enrich students’ science learning within a

modeling and simulation context, students could engage in identifying the

scientific process is being represented in code, examining how the code

embodies the scientific processes, and assess the extent to which the coded

mechanism reflects what the student knows about the process in science being

modeled rather than engaging in programming to create models. This became the

new conceptualization of Decoding as making the connection between a

mechanism in code and the scientific process it represents. For example, in Figure

1 above, a red oval marks the code that causes an agent to descend (the

mechanism in code), matched with the process of precipitation (the process in

science being represented). Validation of the model is a subsequent step that

requires decoding or the mapping between mechanism in code and process in

science it represents. Furthermore, Lee posited that Decoding could expand the

UMC progression to form a Use-Decode-Modify-Create progression (Martin et. al.,

2020). This expanded progression has potential to enhance students’ science

learning as well as increase their CS/CT learning.

The steps in Decoding are described using the example from Project GUTS

Module on Water Resources (GUTS, 2018) in Figure XX above. Overall, Decoding

is operationalized as identifying and assessing the correspondence between

mechanisms in code and processes in science. The first step is to identify and

label code segments that represent a scientific concept such as infiltration or

precipitation. The second step is to compare the identified mechanism with the

process in science it is attempting to represent. This comparison, is the basis for

assessing the validity of the representation: If the mechanism in code matches the

process in science, then one can say the model is “valid”; while if the mechanism

in code and the process in science are not aligned, then we can say that the

model lacks validity based on what we know about the real world phenomenon

being modeled. For example, a student may identify the precipitation code in the

model then deem that it does not adequately represent precipitation (rain falling)

because rain rarely falls straight down to the ground. We caution that the

assessment of a model’s validity is contingent on having a correct understanding

of the processes in the real world phenomenon as well as having a correct

understanding of the encoded mechanism. This proposed practice of validation
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mimics the professional practice of model validation in computer modeling and

simulation. Scientists and modelers seek to ensure that the model being validated

includes the necessary abstractions to simulate a phenomenon, and that the

model was programmed correctly and to specification. With respect to a model’s

validity, Gräbner (2018) coined the phrase “mechanistic adequacy” to describe

when a model has the capacity to represent the mechanistic features/structure of

the target natural phenomenon.

We present Decoding as a new approach to CT integration that is different from

existing approaches. It contrasts with a “programming-first” approach to the

integration of CS and CT in Science wherein students would learn to build models

through programming. Decoding is also an alternative to teaching via

simulation-only wherein the student manipulates a model through a user interface

and does not have access to the code underlying the model that generates the

simulation. While these visualizations can be helpful illustrations of phenomena,

they limit students' assessment of the validity of the model based upon its

encoding of scientific processes and limit students’ exposure to CT and CS.

Additionally, the development of the “Decoding Approach” responded to teachers’

feedback that they needed more explicit links between computer modeling and

science learning, and they did not have time to teach programming within a

science class.

Decoding deepens science learning by engaging students in Mechanistic

Reasoning about how and why phenomena occur. Mechanistic Reasoning focuses

on the underlying and often invisible mechanisms that cause a phenomenon. It is

characterized by hypothetical models of the mechanism being formed and then

tested, evaluated, and revised against observations of the phenomenon (Russ,

2008). Determining why a phenomenon occurs requires reasoning about what

entities, activities of entities, and causal links that generate an outcome or

phenomenon (Machamer, Darden, & Craver, 2000). This practice of analyzing a

model for entities, activities, and causal mechanisms is mechanistic reasoning, a

central component in science inquiry (Russ, Scherr, Hammer, & Mikeska, 2008). In

many scientific fields, explanations require mechanistic descriptions of

phenomena, and the discovery and description of mechanisms is key to the

practice of science (Machamar et al., 2000; Burian, 1996; Bechtel and Richardson,

1993; Crick, 1988; Brandon, 1985; Kauffman, 1971; Wimsatt, 1972). Students engage

in mechanistic reasoning when they are immersed in modeling activities and
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pushed to provide explanations of how and why a particular phenomenon

happens (Russ et al., 2008; Schwarz et al., 2014).

Seeking to advance students’ Mechanistic Reasoning is not new in science

education, Russ et. al. (2008) codified MR in a framework that organizes students’

inquiry into key elements such as Identifying Entities; Identifying Properties of

Entities; Identifying Actions; Identifying Chaining or Cause and Effect relationships

either forwards (this led to that) or backward (that happened so there must have

been this). Schwarz et. al. (2014) later consolidated the many descriptors used by

Russ into three levels of MR where in Level 1 addresses only surface

characteristics / non-mechanistic description of WHAT happened; Level 2

addresses co-occurrence or sequencing of actions describing HOW the process

or phenomenon played out over time / space; and Level 3 attends to WHY (causal)

the phenomenon or process occurred. In our research, we use MR to categorize

and reflect on student thinking during decoding. Russ’ and Schwarz’s frameworks

are used in the identification and analysis of mechanistic reasoning in student

interviews and classroom utterances.

Connecting CT and Decoding through Mechanistic
Reasoning

In theory, CT and Decoding activate complementary cognitive activity and in

particular, Mechanistic Reasoning (MR). By engaging students in identifying

abstractions such as “who are the agents and what are their properties?”;

identifying automations such as “How do the agents interact with other agents

and/or the environment, and how do the processes unfold over time?”; and

thinking about causality such as “why did the change happen (what caused the

phenomenon to happen)?”, CT and Decoding address the key components of MR

but from different perspectives. Whereas a designer’s CT is concerned with

questions like “what are the agents I need to include in this model?”, an analyst’s

decoding is concerned with “what agents did the designer of this model include?”

Thus, in essence, CT is to design what Decoding is to analysis. Decoding involves

understanding how someone else, namely the designer, defined a problem or

phenomenon to investigate, and developed a model to solve a problem or

understand a phenomenon. (See Table 1)
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Table 1. Comparison of the concerns in Computational Thinking vs. Decoding.

The assessment of the validity of the model is a step beyond decoding. To assess

the validity of a model, one asks whether the abstractions made were correct, and

was the implementation of the abstraction and automation faulty? comparing the

coded mechanisms with the real world scientific processes as a way of

determining the mechanistic validity of a model. Mechanistic validity concerns how

the code does or does not represent the real world phenomenon in terms of

processes (rather than or in addition to assessing whether the output data or the

visualization produced by running the model is similar to data collected and

phenomenon observed in the real world).

Over the past year, researchers developed a new hypothesis of how CT and

decoding relate to each other where decoding is defined as comparing

mechanisms in code with processes in science they represent. We hypothesized

that the Mechanistic Reasoning used during CT in the context of modeling and

simulation is the same as the Mechanistic Reasoning used in Decoding although

from a different perspective. In CT, one uses MR from the perspective of a

designer while designing a model, whereas in Decoding, one uses MR from the

perspective of an analyst when analyzing and seeking to validate a model. (See

figure 2).
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Figure 2. Connecting CT and Decoding through Mechanistic Reasoning.

We found it helpful to use Schwarz et al’s Levels of MR framing (2014), to assess

Levels of MR used across both CT and decoding. To test if our hypothesis about

the relationship between CT and Decoding is correct, we expect to see Level 1

concerns (addressing only surface characteristics or non-mechanistic descriptions)

occur in both CT and decoding. In other words, when students plan to build a

model or analyze a model made by someone else, do they attend to the entities

needed or those already in existence, the attributes of those entities, and the

actions of the entities? We also should see Level 2 concerns addressing the

co-occurrence or sequencing of actions that describe how the process of

phenomenon plays out over time and space. In other words, when students plan

or analyze a model, do they describe sequences of actions they see (but without

making causal inferences)? And at Level 3, are concerns pertaining to why the

phenomenon or process occurs seen both when planning a model and when

analyzing a model? If so, we can say that CT and Decoding activate the same type
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of thinking, MR, only from different perspectives. If so, we could claim that

decoding offers the same opportunities as CT/coding to engage students in

mechanistic reasoning. But unlike CT, decoding specifically asks students to

determine if the coded mechanism matches the processes in science it is

modeling, and thus may invoke, apply, and reinforce students' scientific

knowledge. Our theory has helped focus our analysis going forward. Mechanistic

reasoning is being used as an analytical framework to compare thought processes

involved in building models vs. decoding models across three STEM+C projects.

We are applying our coding scheme to capture incidence of MR in the context of

building and decoding models.

Supporting Mechanistic Reasoning with Agent-based
Modeling

Thinking of a phenomenon in terms of mechanisms that generate it is a scientific

practice that has a natural analog in agent based modeling. Describing the activity

of entities and activities that produce a phenomenon when decoding an agent

based model is a mirror process to describing the agents and mechanisms that

need to be implemented to reproduce a phenomenon when creating an agent

based model. The mechanism represented as a procedure in code is an

instantiation of a theory of the way something works. Researchers have analyzed

students’ mechanistic explanations in the context of learning about ecology

(Dickes et al., 2015; Danish et al., 2011; Hmelo-Silver, Eberbach, & Jordan, 2014).

Dickes et al. (2018) found that the lens of mechanistic reasoning can be

productively used to identify the process of third-grade students’ conceptual

development of interdependence in an ecosystem as they engaged in embodied

and computer modeling activities. This mirrors findings from prior analyses of

children’s progressive refinement of explanations about ecosystems through the

lens of mechanism (Machamer, Darden, & Carver, 2000; Russ, Scherr, Hammer, &

Mikeska, 2008).

Agent based modeling tools like NetLogo and StarLogo Nova were found to

support mechanistic reasoning (Hsiao and Lee, 2019). Through analysis of

artifact-based interviews, different patterns of usage of agent-based modeling

tools yielded different mechanistic understandings. It was found that only when
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learners (in this case, middle school teachers) examined the simulation and the

underlying code did subjects provide mechanistic explanations of why

phenomena emerged. This usage pattern, of moving between the simulation

running and the underlying code, enabled subjects to build a web of causal

connections across individual and aggregate-levels in complex systems

phenomena.

Sharing the Theory of Decoding

To familiarize CT integration researchers, field investigators, and facilitators with

this Theory of Decoding we designed an educational sequence that drew on what

they already were familiar with. First, we reviewed the roots of the Decoding

Approach and the problem of practice it addresses. Then we reviewed an

operational definition of decoding as a set of steps teachers could use to engage

students in analysis of a model for the processes in science being represented

and also assessing a model’s validity. Next we reviewed mechanistic reasoning

(MR). Though we had introduced it before, it was unclear to what extent people

understood it or saw its utility. In order to make MR relatable, we needed to

connect it to artifacts and processes that were familiar to the audience. Since

many of our team members are familiar with the Project GUTS curriculum, we used

it to explain MR.

We handed out Project GUTS’ model design and model observation forms and

asked the team members to review the questions therein. Then we showed how

the questions on the model design and model observation forms were aligned

with Russ et al’s MR framework with a few exceptions. We showed that there was

a close alignment between the Project GUTS’ questions about the agents, their

behaviors, the environment, etc. and the concerns of MR, namely the entities, the

properties of entities, actions of entities, etc. We also pointed out that chaining in

MR does not appear in the Project GUTS forms, but is similar to cause and effect

relationships in science.

Next, we mapped Russ et al’s MR framework to Schwarz et al’s Levels of MR. With

that understanding, we delved into the Theory of Decoding as seen in figure XX.

above. In the diagram, the left red oval represents CT in the context of model
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making, while the right blue oval represents Decoding in the context of analyzing

a model. Importantly, we show how all three levels of MR are activated in each

type of thinking (CT and Decoding). We claim that the two types of thinking are

mirrors to one another. This theory was shared with the attendees of the Decoding

Conference in November 2023. We heard from participants that the way we

introduced MR was relevant and helpful for them.

Testing the Theory of Decoding

The Theory of Decoding is being tested in three NSF-funded STEM+C projects

around Decoding:

● Massachusetts Institute of Technology’s Making Sense of Models (MSM), NSF

STEM+C award #1934126, developed and tested an interdisciplinary curriculum

for 6th grade students offered during the regular school day that interweaves

math, science and CT through decoding models of scientific phenomena.

● American Museum of Natural History’s Decoding Urban Ecosystems

(DecodeNYC), NSF STEM +C award #1934039, designed a new curriculum and

offered summer institutes for middle school students that engaged them in

decoding at each step in a Use-Modify-Create progression.

● EDC’s Computational Science Pathway Option for Massachusetts High School

Students (Science+C), NSF STEM+C award #1934112, developed three new +C

courses for high school students that introduced them to how scientific models

embed processes in science and how they can be used and modified to test

hypotheses about real world phenomena.

The project’s principal investigators incorporated decoding as an approach to

deepen both CT and disciplinary learning. Within each project, Decoding was

defined similarly as mapping between mechanisms in code and processes in

science, but conceptualized and instantiated Decoding in each curriculum

differently:

In the MSM curriculum, Decoding was a mirror to CT and the mechanism learned

in a math context was transferred to a science context. Initially in each unit, MR

was used by 6th grade students when they were using CT to build simple
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mechanisms in the math portion of the curriculum, then analogous MR was used

when decoding a scientific model that uses the same mechanism that was seen

before in math. For example, a bounce or stick mechanism was coded in the math

portion of a 6th grade class wherein when a ball impacts a surface it either

bounces off (if some condition exists) or sticks to the surface (if some other

condition exists). Then in the science portion of class, students learn about

reflection and absorption, link it to the bounce and stick mechanisms learned

earlier, and transfer the understanding of the bounce and stick mechanisms to the

reflection or absorption of solar energy based on the surface’s color in a scientific

model.

In the Decode-CT curriculum taught in the DecodeNYC summer program,

7th and 8th grade students engaged in decoding models at each phase in the

Use-Modify-Create progression. In the use phase, while running a model to

produce a simulation, students looked for the code that instantiated specific

behaviors. In the modify phase (while working in code), reading and decoding

models provided students with the knowledge of how the code works and how

it represented processes in science as a preliminary step before making

modifications. Likewise, in the create phase (while working in code), students were

supported in reading and decoding existing scientific models before incorporating

new actions and behaviors from the existing model into their own model.

In the three high school Science+C curricula (Biology+C, Chemistry+C, and

Physics+C) a Use-Decode-Modify progression was used to engage students in

decoding. The first lesson of each unit, the “Use” lesson, linked the science

concept to a real world phenomenon or scenario selected for its familiarity to

students, reviewed key science concepts, and investigated how the model when

run as a simulation mimicked the phenomenon, or not. In the second lesson, the

“Decode” lesson, students uncovered where and how concepts from science

were instantiated in code and discussed potential refinements (modifications) that

could be made to the model to make the simulation more realistic or to add

additional functionality. Finally, in the third lesson, students were asked to choose

a modification to make to the model and instructions on how to make the

modification (given a choice of levels of scaffolding they preferred), then were

guided as they modified then tested the model’s code.
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Additionally, expert facilitators from the Project GUTS (NSF ITEST #0639637)

community contributed to the description of how Decoding can be integrated into

the Project GUTS curriculum to deepen science learning.

Conclusions

Research on CT integration in disciplinary settings has stagnated around a two

approaches namely the “programming first” that has numerous barriers to

implementation such as the poor fit with science learning; the lack of preparation

of science teachers to teach programming; and the immense amount of time it

takes to support students as builders of models, and the use-only approach

wherein simulations are run to generate data and/or illustrate scientific concepts,

This approach limits students’ ability to look “under the hood” and learn how

mechanisms in code generate phenomena in the simulation and how those

mechanisms in code might correspond to processes in science. The Decoding

approach was proposed as a solution to CT integration that bypasses barriers of

the “programming first” approach and that deepens science learning by making

strong links to science content and processes through decoding of phenomena.

But in the Decoding approach we anticipate there will be tradeoffs as well. While

students get to inspect the code that runs simulations and map it to processes in

science, without prior learning experiences in computer science, interpreting the

code as processes is difficult for most students. Additionally, to validate a model,

students will need a solid knowledge of how the phenomena is generated in the

real world. Students will have less agency in the decoding approach than in the

programming first approach, and this may limit the popularity of the decoding

approach with students. Our pilot teachers have embraced the Decoding

Approach but require extra professional development to understand mechanistic

reasoning and how it can be used to bridge code and science to promote the

understanding of processes in both domains (code and science). We firmly believe

that implementing the Decoding approach requires a commitment on behalf of the

school or district to allow teachers to implement the curriculum fully to derive the

learning benefits of Decoding. This paper aims to inform researchers and

practitioners about the Decoding approach with the hopes that others will

incorporate and test the Decoding approach with K-12 students.
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