Activities to introduce computer programming

Explain to students that computer programming is the process of planning and creating a sequence of steps for a computer to follow. The instructions have to be orderly, precise, and unambiguous to get the desired result. To show students how difficult this could be, and why programming is sometimes considered “hard,” you can try one of the following activities:

1. Make a copy of the Activity #1 on the next page and cut it up into separate pictures. Call one student to stand facing the class and give that student one of the pictures. Ask the student to describe the picture so that the rest of the class can duplicate the picture without seeing it, relying solely on the verbal instructions given. The student may not use any gestures. Afterwards, have everyone hold up their drawings and compare them with each other. Ask students, “Even though everyone heard the same directions, why do some people’s drawings look different from others? Does anyone’s drawing look exactly like the picture that the student described on the handout? Is it possible to give clear enough directions so that more people draw the exact picture?” Repeat with another drawing on the handout.

2. Organize students into small groups (if needed) and give each group a dozen index cards. Instruct groups to write one instruction on each card and arrange them in the correct order as directions for a blind person to put on a pair of sweat pants. One student can read the instructions step-by-step while the teacher follows the instructions literally. For one set of directions, pick up the pants by the ankles and then proceed to follow the students’ directions. For another set, pick up the pants so that it is turned around backwards and then follow the students’ directions.

3. Ask for three student volunteers and assign them these roles: brain, eyes, and robot. Blindfold the brain and the robot. The goal of the students is to find and pick up the red box (or some other object) in the classroom. The brain may ask the eyes only yes or no questions. Only the brain can give directions to the robot to follow. Only the robot can move but she/he cannot talk.

4. Borrow snap-cubes (or lego blocks, or color gumdrops and toothpicks) from a math teacher. Use about 10-12 cubes (or the other objects) to create a three-dimensional structure. Prepare sets of 15-20 cubes (same colors if possible) for as many groups of 3-4 students as there are. Hide the structure inside an open box that’s sitting on its side so that the structure can only be seen from one side. Each group member has a role: observer, communicator, and builder(s). The observer remains at the box containing the structure and is the only person who can see the structure. The communicator travels back and forth between the observer and the builder(s) to relay messages. The builder(s) are the only ones who can touch the cubes (or other objects). The goal is to replicate the structure exactly (you might want to specify if colors need to be exactly the same or not). Set a time limit.

5. A variation of #4 is to make the observer and communicator the same role. In order to reduce the pressure on one student, you can assign this role to two students. Limit the number of times that students playing this role can see the structure to one 2-minute session and one 1-minute session. Also, to make the activity more challenging, give students a pre-selected set of cubes so that they must use all the cubes and the color state must match. So for example, if in the original structure the door is made of 4 red blocks, in their own structure the door can be 4 yellow blocks. But they must use all their cubes so part of the challenge is figuring out which color maps with which.
Debrief the activity by asking students why it was challenging (see PowerPoint lesson 0). The activity can make two main points about programming:

1. It is difficult (but not impossible) to give clear, precise, and simple directions. 

2. Computers are “dumb,” in that they cannot make inferences or interpret instructions like a human being. They can, however, process simple directions very quickly.

Explain that programming often involves breaking down a task into parts that can then be broken down even more until the instructions are as detailed and simple as possible. For example, if a task is to make a cake, you might want to break the task into three parts: make the batter, bake the cake, and decorate the cake. Each of these parts can then be broken down into smaller tasks: make the batter can consist of beating the eggs and the butter, stir in the flour and sugar, and pour the batter into a baking pan. 

Activity #1 pictures

[image: image1.emf]
Source: http://csunplugged.org/programming-languages
