Student Worksheet:

LESSON 3: PROGRAM A BUNNY
Part 0: StarLogo vocabulary and navigation.

This is the vocabulary that will be used in this activity. You may reference this diagram to help you find blocks while you program.

· In StarLogoTNG, all agents are assigned a certain breed.

· Commands to control the breeds are called blocks.

· The programming area of StarLogoTNG is called the block canvas.

· On the canvas there are separate sections called pages to help organize your code.

· You can navigate these pages through the mini-map in the upper right hand corner.

· The colored tabs on the left hand side are called drawers. You can click on them to open and close them. Here is where you find blocks that you want to use, which you drag from the drawer onto the canvas.

· Drawers are organized under either the Factory or My Blocks. You can click on the right arrow next to Factory that says “My Blocks” to get to My Blocks, and you can click on the left arrow next to My Blocks that says “Factory” to return to the Factory.

[image: image1.png]L4 racory edit breeds

[image: image46.png]

[image: image47.png]4 MyBlocks D

Factory psec

STrtles)
Everyone!
Setip)
RuRtime]

CollIsions!

[image: image48.png]Setup and Run

Movement
551
[GoRTToIE
Jrerain)

Here is an example of directions you will see:

“Take the “forward” block from the “Movement” drawer under the Factory. Drag it onto the “Turtles” page on the block canvas.” This translates to the following action:

Part 1: Creating a rabbit breed.

1) Adding a breed.

a) Click on the button next to the Factory that says “Edit Breeds.” This should pop open a window called the Breed Editor.

[image: image49.png]

[image: image2.png]

b) Click on “New” to create a new breed and give it a name (i.e. “Rabbits”). Choose a shape for the breed, then click “OK.” Do you notice anything different?

[image: image3.png]

A new page has been automatically created for the new breed, along with a drawer in My Blocks and various blocks within that drawer.
2) Setting up the breed.

a) Locate the “Setup” page on the block canvas and find the “setup” stack. This stack contains all the commands that will be executed when you press the “setup” button in the Runtime window.

[image: image4.png]Setup

b) Find the “create Rabbits [num, do]” block from the “Rabbits” drawer under My Blocks. This block creates [num] number of rabbits and asks them to do the commands listed under [do].

[image: image5.png]4 My Blocks

>
scory Subsers

c) Drag it onto the “Setup” page on the block canvas and hook it under “scatter Carrots” in the “setup” stack. Change the number “10” to read “40.”
d) Repeat the process for the “scatter Rabbits” block. This block scatters the rabbits to random locations around Spaceland. Now the program will create 40 rabbits and scatter them when you press “setup.”
[image: image6.png]setup

3) Graphing

a) Locate the “Runtime” page on the block canvas and find the “population count” block. This block corresponds to the graph in the Runtime window. It currently graphs only the number of carrots, scaled by a half (this is so that it will be easier to compare carrots and rabbits later on, since there are many more carrots than rabbits in the model).

[image: image7.png]population count

b) Find the “count Rabbits” block from the “Rabbits” drawer under My Blocks. This block returns the total number of rabbits that are alive in Spaceland.
[image: image8.png]

c) Drag it onto the “Runtime” page on the block canvas and stick it in the socket of the “population count” block. Now the graph in the Runtime window should show two lines - one for carrots and one for rabbits.

[image: image9.png]

After you make each change to the model, try running it. Observe the graph to see how each new rabbit behavior affects the population dynamics.

Part 2: Simple rabbit movement (procedures).

1) Creating a procedure declaration.

a) Find the “Procedure” block from the “Procedure” drawer under Factory.

[image: image10.png]R ettt

Movement Jr——

rerai)

Other/Agents
procedire)
aFabIes

b) Drag it onto the “Rabbits” page and rename it “Hop.”

[image: image11.png]

[image: image12.png]

This is a procedure declaration block. Underneath the block, we can stack commands that define the procedure. Now whenever the procedure is called, the rabbit will execute the entire list of commands in order.

For instance, say our rabbit “hops” by moving forward, wiggling its nose, looking around, sitting down, and munching on grass. Think of the procedure as a shortcut command: Let’s say our rabbit hops a lot. Rather than typing the entire sequence of commands each time, we only have to type “hop” and it will know to do the entire list of actions. Much shorter, right?

c) For now our rabbits are lazy and only move forward. Find the “forward” block from the “Movement” drawer under Factory. This block makes the rabbit move forward [steps] number of steps.

[image: image13.png]

d) Drag it onto the “Rabbits” page under “Hop.” Now your “hop” procedure is defined as a simple forward movement of step size 1.
[image: image14.png]@Hw "
Torward steps 4

2) Calling the procedure.

a) Locate the “Runtime” page on the block canvas and find the “forever” block. This block contains all of the commands that will be run over and over again when you press the “forever” button in the Runtime window.

[image: image15.png]

b) Find the “Hop” block from the “Rabbits” drawer under My Blocks.

[image: image16.png]

This is a procedure call block. It is generated automatically when you create a procedure using a procedure declaration block like you did in the previous step. This declaration block was merely a definition, whereas this call block is the actual command. Use this block when actually asking the rabbit to “hop.”

c) Drag it onto the “Runtime” page and hook it under the “Rabbits” hook in the “forever” block. Now the rabbits will hop when you press “forever.”
[image: image17.png]

Part 3: Rabbits eating carrots (collisions).

1) Defining a collision.

a) Find the “Collision” block between Rabbits and Carrots from the “Rabbits” drawer under My Blocks.

b) Drag it onto the “Collisions” page.

[image: image18.png]

This is a collision block. The program automatically checks for collisions between rabbits and carrots. In the event of a collision, each of the colliding agents performs the command listed under its hook.
c) When our rabbits collide with carrots, they eat the carrots. Visually, we see the carrots die. Find the “die” block from the “Logic” drawer in the Factory.

d) Drag it onto the “Collisions” page and hook it under the “Carrots” hook in the “Collision” block. Now any carrot that collides with a rabbit will die.

[image: image19.png]

Part 4: Rabbit age and energy (agent variables).

1) Creating a variable declaration.

What is a variable? A variable is simply some value that the program wants to keep track of. As part of the name “variable,” its value may or may not vary. There are two types of variables: an agent variable belongs to only that particular agent, while a shared variable is shared and accessed by everyone. In most cases the variable is some trait, such as color, height, size, etc., but in other cases the variable could simply keep tabs on some state, such as if it’s raining or not.

a) Find the “agent number” block from the “Variables” drawer in the Factory.

b) Drag it onto the “Rabbits” page and rename it “rabbit age.”
[image: image20.png]

[image: image21.png]Raboie)
Fabbit ago)

This is a variable declaration block. You can think of the variable declaration block as clearing a chunk of storage space for the variable. For instance, say we are keeping track of our rabbit’s age. Without a declaration, the program does not even know the rabbit has an age and consequently will not try to save space for it. The agent number is a type of agent variable that keeps track of a number value.

c) Repeat the process for “rabbit energy.” Now the program knows that rabbits have both an age and an energy.
[image: image22.png]Raboie) Rabbita.
Fabbit ago) Fabbit energy)

2) Setting the variable initial value.

a) Relocate the “Setup” page and find the “setup” stack from Part 1 (2d).

[image: image23.png]setup

b) Find the “set rabbit age” block from the “Rabbits” drawer in My Blocks.

This is a variable setter block. It is generated automatically when you create a variable using a variable declaration block like you did in the previous step.

Though we’ve declared that the rabbit has an age, the program still does not have a clue how old the rabbit is. If you ask the program what the rabbit’s age is, it will either go crazy or tell you some nonsensical value. We use a setter block to set the value, effectively telling the computer to save the value in its storage space.
c) Drag it onto the “Setup” page and hook it under the “do” hook in the “create Rabbits” block. Type the number “10” and press enter. (Connect the blocks if they don’t automatically connect.)

d) Repeat the process for “set rabbit energy” and the value “50.”
[image: image24.png]

e) While the rabbits could begin with a set age, we want to insert a bit of chance into the model. To do this, find the “random” block from the “Math” drawer in the Factory. This block picks a random number between 1 and the input. For instance, random 10 will return a value between 1 and 10.

f) Drag it onto the “Setup” page and stick it between “set rabbit age” and “10.”
g) Repeat the process for “set rabbit energy” and the value “50.” Now each rabbit will begin with some random age between 1 and 10 and some random energy between 1 and 50.

[image: image25.png]

Part 5: Rabbit growth and death (logic).

1) Aging and energy loss.

With age and energy variables, we can more accurately represent the life of a rabbit, which does not run around forever. As rabbits grow, they get older and use energy.

a) Find the “Procedure” block from the “Procedure” drawer under Factory.

b) Drag it onto the “Rabbits” page and rename it “Rabbits Grow.”
c) Find the “inc rabbit age” block from the “Rabbits” drawer in My Blocks. This block increases the rabbits age by a given amount. Type the number “1” and press enter. (Connect the blocks if they don’t automatically connect.)

d) Drag it onto the “Rabbits” page under “Rabbits Grow.”
e) Repeat the process for “inc rabbit energy” and the value “-0.5.” Now the “rabbits grow” procedure is defined as an increase in rabbit age by 1 and a decrease in rabbit energy by 0.5.

[image: image26.png]Reboie)
inclrabbit age!

Reboia)
incrabbit energy

2) Energy gain through eating.

Now that the rabbit loses energy, it must have some way to gain the energy back. We already programmed the rabbits to “eat” carrots by making the carrots die upon collision. However, when the rabbits eat the carrots, they should also gain energy.

a) Relocate the “Collisions” page and find the “Collision” block from Part 3 (2d).

b) Find the “inc rabbit energy” block from the “Rabbits” drawer in My Blocks.

c) Drag it onto the “Collisions” page and hook it under the “Rabbits” hook in the “Collision” block.

d) Find the “carrot energy of [ID]” block from the “Carrots” drawer in My Blocks. This block allows the rabbit to inquire about the energy that the carrot has. [ID] is the ID number of the carrot that the rabbit is inquiring about.

e) Drag it onto the “Collisions” page and stick it in the socket of the “inc rabbit energy” block.

f) Find the “collidee” block from the “Other Agents” drawer in the Factory. This block returns the ID number of the carrot that the rabbit collided with.

g) Drag it onto the “Collisions” page and stick it in the “ID” socket of the “carrot energy of” block. Now whenever a rabbit and carrot collide, the rabbit will increase its energy by the amount of energy that that carrot had.

[image: image27.png]Reboie) S —

= ol
o | s g

3) Energy efficiency.

In real life there is some amount of energy lost in the form of heat during consumption at each stage of the food chain. Though this energy is on the order of 90%, we will model it in our system as 50%. Hence, we want to modify the amount of energy that the rabbit gains to be only half of the energy that the carrot had.

a) Find the “x” block from the “Math” drawer in the Factory. This block multiplies two numbers.

b) Drag it onto the “Collisions” page and stick it between “inc rabbit energy” and “carrot energy of [ID].”

[image: image28.png]Reboia) e U\

= 5
ncraboitonaray | [carosnergy ooy o0

c) Type the number “0.5” and press enter. Attach the block in the empty socket of the “x” block. Now the rabbits only gain half of the carrot energy upon collision.

[image: image29.png]Reboie) .
Coron)

. N e« &

4) Death.

Finally, rabbits die of old age and weakness. We will program death into the system by checking if it is the rabbit’s time to die.

a) Relocate the “Rabbits” page and find the “Rabbits Grow” procedure from Part 5 (1e).

b) Find the “if [test, then]” block from the “Logic” drawer in the Factory. This block checks if a condition is true or false and performs the action specified only if the condition is true.

c) Drag it onto the “Rabbits” page under the “inc rabbit energy” block in “Rabbits Grow.”
[image: image30.png]

d) When do we want the rabbits to die? In our model we will tell our rabbits to die if they are either too old or have no energy left. Find the “or” block from the “Logic” drawer in the Factory. This block will allow us to check two conditions and returns true if at least one of them (one or the other) is true.

e) Drag it onto the “Rabbits” page and stick it in the “test” socket of the “if” block.

[image: image31.png]

f) Find the “>” block from the “Math” drawer in the Factory.

g) Drag it onto the “Rabbits” page and attach it in the first socket of the “or” block.

h) Find the “rabbit age” block from the “Rabbits” drawer in My Blocks. This block returns the current age of the rabbit.

i) Drag it onto the “Rabbits” page and attach it in the first socket of the “>” block. Type the number “40” and press enter. Attach the block in the second socket.

j) Repeat the process for “<” and the values “rabbit energy” and “0.” Now the rabbits check if they are either older than 40 (rabbit age > 40) or have no energy left (rabbit energy < 0).

[image: image32.png]

k) Though the rabbits check for the death condition, they must also actually die. Find the “die” block from the “Logic” drawer in the Factory.

l) Drag it onto the “Rabbits” page and hook it under the “then” hook in the “if” block. Now the rabbits check if they should die, and if they should, they do.

[image: image33.png]

5) Calling the procedure.

You may have noticed that the rabbits still do not grow. Just like with rabbit “hop,” we have only defined the procedure so far. We need to actually ask the rabbit to perform the “rabbits grow” procedure before we see any results.

a) Relocate the “Runtime” page and find the “forever” block from Part 2 (2c).

b) Find the “Rabbits Grow” block from the “Rabbits” drawer under My Blocks.

c) Drag it onto the “Runtime” page under the “Hop” block in “forever.” Now the rabbits will grow when you press “forever.”
[image: image34.png]

Part 6: Rabbit reproduction (hatch).

1) Hatching an offspring.

If all of the rabbits die over time, how do we sustain the population? The answer is that the rabbits reproduce. For the simplicity of this model, our rabbits reproduce asexually. How might you program rabbits that reproduce sexually?
a) Find the “Procedure” block from the “Procedure” drawer in the Factory.

b) Drag it onto the “Rabbits” page and rename it “Reproduce.”
c) Find the “hatch [do]” block from the “Logic” drawer in the Factory. This block hatches a new rabbit that is an exact replica of its parent. Upon hatching it will do the commands listed under [do].

d) Drag it onto the “Rabbits” page under “Reproduce.” Now the “reproduce” procedure is defined as the rabbit creating an exact replica of itself.

[image: image35.png]

2) Altering the offspring’s traits.

We know that offspring aren’t born to be clones of their parents, so we must alter the offspring’s traits upon hatching. In particular, we will as the offspring to be newborn (age = 0), with less energy (energy = 25% parent energy), and a slight distance away from the parent.

a) Find the “set rabbit age” and “set rabbit energy” blocks from the “Rabbits” drawer in My Blocks. Find the “set heading” and “forward” blocks from the “Movement” drawer in the Factory.

b) Drag them onto the “Rabbits” page and hook them sequentially under the “do” hook in the “hatch” block.

c) Attach the following values for each (you know how to do this!):

i) “0” in the socket of “set rabbit age.”
ii) “rabbit energy x 0.25” in the socket of “set rabbit energy.”
iii) “random 360” in the socket of “set heading.”
iv) “1” in the socket of “forward.”
[image: image36.png]

3) Losing energy.

Since the parent rabbit shared 25% of its energy with its offspring, it decreases its own energy to 75%.

a) Find the “set rabbit energy” block from the “Rabbit” drawer in My Blocks.

b) Drag it onto the “Rabbits” page under the “hatch” block in “Reproduce.” Note that the block must be outside the “hatch” block because it is the parent rabbit that is setting its energy and not the offspring.

c) Attach “rabbit energy x 0.75” in the socket of the “set rabbit energy” block. Now the parent rabbit loses 25% of its energy when it reproduces.

[image: image37.png]

4) Calling the procedure.

As before, we need to actually ask the rabbit to perform the “reproduce” procedure before we see any results. However, we don’t want the rabbits to reproduce constantly, rather only when they are sexually mature and have enough energy.

a) Since reproduction is part of the rabbit growth cycle, we will put the procedure under the “Rabbits Grow” procedure. Relocate the “Rabbits” page and find the “Rabbits Grow” procedure from Part 5 (5c).

b) Find the “if [test, then]” block from the “Logic” drawer in the Factory.

c) Drag it onto the “Rabbits” page under the “if [test, then]” block in “Rabbits Grow.”
[image: image38.png]

d) When do we want the rabbits to reproduce? In our model we will tell our rabbits to reproduce if they are both of age and have enough energy. Find the “and” block from the “Logic” drawer in the Factory. This block will allow us to check two conditions and returns true if both of them (one and the other) is true.

e) Drag it onto the “Rabbits” page and stick it in the “test” socket of the “if” block.

[image: image39.png]

f) Attach “rabbit age > 15” and “rabbit energy > 15” in the two sockets of the “and” block. Now rabbits check if they are both older than 15 (rabbit age > 15) and have enough energy (rabbit energy > 15).

[image: image40.png]

g) Find the “Reproduce” block from the “Rabbits” drawer in My Blocks.

h) Drag it onto the “Rabbits” page and hook it under the “then” hook in the “if” block. Now the rabbits check if they should reproduce, and if they should, they do.

[image: image41.png]

Part 7: Rabbit senses and smart movement (smell).

1) Rabbits smell.

Now that we have a fully functioning rabbit population, we can make the rabbits smarter. Rabbits can track down the carrots by sensing their proximity.

a) Relocate the “Rabbits” page and find the “Hop” procedure from Part 2 (1d).

b) Find the “smell list with [radius, condition]” block from the “Other Agents” drawer under the Factory. This block returns a list of ID numbers of agents that are in the radius [radius] of the rabbit that satisfy the condition [condition].

c) Drag it onto the “Rabbits” page next to the “Hop” procedure. We’re not going to use it yet, but let’s investigate how to set it up.

d) Type the number “10” and press enter. (Connect the block to [radius] if they don’t automatically connect.)

e) Find the “=” block from the “Logic” drawer under the Factory. Find the “breed” block from the “Traits” drawer under the Factory. Find the “breed: Carrots” block from the “Carrots” drawer under My Blocks.

f) Drag them onto the “Rabbits” page. Attach “breed = breed: Carrots” in the [condition] socket of the “smell list with” block. This will return a list of only carrots within a radius of 10 of that particular rabbit.

[image: image42.png]

2) Using the rabbit sense.

Equipped with the list of all the carrots in the vicinity, the rabbits can track one down rather than move forward blindly, hoping to encounter it. To do this, the rabbit should first check that there is in fact a carrot to chase. If so, then the rabbit should turn to face the carrot and then move forward. Otherwise, the rabbit should just continue forward, since there is no reason to deviate from the current path.
a) Find the “if [test, then]” block from the “Logic” drawer in the Factory.

b) Drag it onto the “Rabbits” page above the “forward” block in “Hop.”
[image: image43.png]

c) Now let’s use this list we made to make the rabbits turn. Find the “any? [agent list]” block from the “Everyone” drawer under My Blocks. This procedure takes the list and returns true if it contains one or more ID numbers, indicating that there are carrots within the radius 10.

d) Drag it onto the “Rabbits” page and stick it in the “test” socket of the “if” block.

e) Attach the “smell list with” blocks that you set up in the “agent list” socket of the “any?” block.

[image: image44.png]

f) Find the “turn towards [agent ID]” block from the “Everyone” drawer under My Blocks. This procedure takes the ID number of some agent and makes the rabbit turn to face that agent.

g) Drag it onto the “Rabbits” page and stick it in the “then” socket of the “if” block.

h) Create another set of “smell list with” blocks.

i) Find the “first [list]” block from the “List” drawer under the Factory. This procedure takes the first value from the list, which here means the ID number of the first carrot that the rabbit sensed.

j) Drag it onto the “Rabbits” page and stick the “smell list with” blocks in the “list” socket of the “first” block.

k) Attach “first” in the “then” socket of the “if” block. Now the rabbits should move in such a way that they can chase after carrots.

[image: image45.png]

Mini map

Page Label

Factory

Drawers

Block Canvas

Blocks

