StarLogo TNG Treasure Game Curriculum Teacher Guide
Contents

1Overview

2Instructional Materials

2Unit Flow

2Equipment and Materials

3Teaching Tips

4StarLogo TNG Basics for Teachers

5Unit “At-a-Glance”

9Teaching Notes by Lesson

12Activities to introduce computer programming

14Activity #1 pictures

15Reproducible - Treasure Game Design Activity Sheet

16Reproducible - Lesson 1: Basic Movement

17Reproducible - Lesson 2: Keyboard Controls

18Reproducible - Lesson 3: Treasures and Hazards

19Reproducible - Lesson 4: Forever (run)

20Reproducible - Lesson 5: Moving Enemies

21Reproducible - Lesson 6: Terrain

22Reproducible - Lesson 7: Coordinate System

23Reproducible - Lesson 8: Hatch

24Reproducible - Lesson 9: Variables

25Reproducible - Lesson 10: Wrap Up

Overview
The StarLogo TNG game curriculum unit uses computer game design as the motivation and theme to introduce programming to middle or high school students. StarLogo TNG is The Next Generation of StarLogo modeling and simulation software. Students and teachers use SL-TNG’s agents-based programming and 3-D graphics to create and understand simulations and complex systems. Each 1.5 hour lesson includes a mini-lesson to introduce new programming commands and one or more programming exercises to practice using those commands to design a game play element. Ideally, students continue working on programming activities on their own for 30 min to 1 hour outside of class time. Over the course of 10 lessons, students gain the programming knowledge to develop their own “Treasure Hunt” game, a complex system that includes multiple agents and first person game play. They also learn programming basics such as the concept of a forever loop, Boolean logic used in if / then statements, procedures and abstraction, and using variables.

Instructional Materials
This teacher guide (TG) includes a table to show the content of each lesson “at-a-glance,” materials needed, optional activities for students who are new to computer programming, and teaching notes that give lesson-specific tips, learning goals, and reflections from the pilot implementation of this unit. The TG also includes reproducible handouts that describe each of these programming activities and an activity sheet to aid students in the design of their games. Two other documents are a reproducible student reference guide to all the programming commands that they learn in this unit and a reproducible guide to navigating in Spaceland.
The bulk of the lesson-to-lesson instruction consists of a PowerPoint presentation for each lesson that teachers can modify or use as it is. A slide show is an effective way of combining screen shots and explanatory texts to show features of StarLogo TNG, introduce new programming commands, and give line-by-line guidance for programming. Each presentation alternates between whole class instruction and individual instructions for students working on small exercises using StarLogo TNG. The presentations contain teaching notes and the answers to exercises in the presentations’ notes sections. Each lesson starts with a review programming exercise and culminates in a lengthier programming exercise during which students may fill in some part of an incomplete project file to practice programming new commands. In doing this, students explore what happens when they use different commands or implement a new game feature. Note that the presentations have animations that match the text and the screenshots as you explain each point.
Unit Flow
Lessons 1-3 gradually introduce students to each of the fundamental parts of a StarLogo TNG project. In Lesson 4, students create the standard version of the “Treasure Hunt” game, building it from scratch and seeing how the different parts of a project work together. In Lessons 5-10, students continue to learn new blocks and experiment with different ways to use them to modify the standard treasure hunt game and make their own versions of the game. The programming exercises consistently reinforce blocks learned in previous lessons so that students combine blocks in increasingly complex ways. Ultimately, it is up to the teacher to extend or add lessons to include more programming blocks depending on time, interest and ability.

Equipment and Materials

· StarLogo TNG software (see http://education.mit.edu/starlogo-tng for computer requirements and a free download)

· Curriculum PowerPoint presentations and project files (download at http://education.mit.edu/drupal/gamecurriculum)

· PowerPoint software

· LCD projector to display the PowerPoint lesson presentations and the SL-TNG software
· Student Reference Guide (1 copy per student or pair)

· Guide to Spaceland (for 1st lesson)

· Reproducible Lesson handouts for students (optional)

· Materials for optional introductory activities (see p. 12)
· Timer or stopwatch (optional)

· Board or chart paper

Teaching Tips
· The notes section of the PowerPoint presentation contains suggestions and answers to the exercises on the slides.

· Press Alt-Tab (or Apple-Tab) to quickly switch between the PowerPoint slideshow and StarLogo TNG when using the LCD projector.

· When introducing StarLogo TNG to students for the first time, you may want to give students some time to explore the interface and blocks. Students may naturally discover how to edit the terrain, change the appearance of agents, and alter the values of traits in the agent monitor window. Set a time limit for this exploration. Once their curiosity is satisfied, they may be more willing to focus on the learning activities.

· There may be multiple times during each lesson when you require everyone’s attention to make an important announcement, share an observation, or wrap up a mini-exercise and transition to the next part of the lesson. Establish a signal on the first day so that students know when you want their attention and how to behave whenever you give that signal. For example, if you raise your hand, you expect the students to also raise their hands, stop what they’re doing, stop talking, and look at you. For a smaller group, you can ring a bell to signal that you need everyone to stop what they are doing and give you their full attention.
· If students are working in pairs on a computer, you may want to designate roles and have student switch every 15-20 minutes. The roles can be: “driver” and “navigator.” The driver controls the mouse and keyboard. The navigator accesses the student reference guide and programming activities handout, and verbally directs the driver’s actions on the computer. Both students are responsible for successfully completing the programming activities. For more information about pair programming, including a video that demonstrates what to do and what not to do, go to http://psweb.etr.org/gcgweb/public/resources/index.html or do a web search for “pair programming video.”
· Instruct students to shut off their monitors when you need their undivided attention.

· If students are working each to a computer, you may want to designate “buddies” so that at appropriate times during the workshops, students may “show-and-tell” about their projects, share ideas, or check each other’s work.

· Encourage creativity, even if the game that students design does not necessarily “make sense.” For instance, one student in the curriculum pilot made a game that had 75 player agents instead of just 1 player agent, as would be expected. Despite the struggle to make the game playable, the student still stuck to her choice. Her strong feeling of ownership and freedom to be creative contributed to her perseverance in learning programming.
· You may want students to save their projects in a folder under their name or save them as the project under their initials. Collect the projects on a thumb drive or move them to a shared server folder.
StarLogo TNG Basics for Teachers

SL-TNG is agent-based programming. The default breed is named Turtle and the agent looks like a 3-D rendering of a turtle. You can have many agents that belong to the Turtle breed. When programming, you would typically give instructions to an entire breed, not individual agents. Thus, normally, all Turtle agents would execute the same instructions at the same time (so it appears).
There are two windows – one that shows the palette of programming blocks and the black canvas where the programs are constructed, and the other that shows Spaceland, a 3-D world where agents execute the programs and where the user can test out the programs.

The programming canvas is divided into pages that represent suggestions for keeping one’s program organized. Almost all projects have a minimum of a Set up block to create agents and do other initialization, and a Forever block, an eternal loop that tells each breeds of agents what commands to execute when the program is “running.” In addition, most projects have collision blocks that instruct agents how to behave when they “touch” other agents of different or same breed. Finally, each breed also has its own section of the canvas where variables and procedures specific to that breed can be defined.
The Palette has two pages – Factory and My Blocks. The Factory contains drawers of blocks that are always present. My Blocks contain drawers and blocks that are dynamically created for each new breed and user-defined variables and procedures.
[image: image1.png]e Programming Window e Spaceland
— Palette of “blocks”
— Canvas

B o Runtime Window

Unit “At-a-Glance”
	#
	Activity / Task
	Blocks
	Programming Concepts and Skills
	Complex Systems Ideas
	Game Elements

	0/1
	Optional introduction to computer programming activity (see p. 12)
	
	Need to give computer instructions that are simple, unambiguous, and in the correct order.
	
	

	1
	Basic Movement:

Program movement rules to maximize score (based on height of agent) on a terrain with large patches with different colors and heights.

Project file used:

first program.sltng

Handout:

How to Navigate in Spaceland
	· Forward

· Back

· Left

· Right

· If / then (interpret)

· Patch color (interpret)

· = expression (interpret)

· Forever (interpret)
	· Drag blocks from palette

· Double-click block to execute

· Snap blocks to create sequences

· Change arguments

· Delete blocks

· Math: Degrees of turning

· Spaceland navigation

· Execution model basics

· Loop concept
	Environment-agent
	Basic Movement

Score

	2
	Keyboard Controls:

Implement keyboard controls for movement from 1st person point of view. Also implement keyboard controls to get past obstacle course.

Project files used:

movement review.sltng

obstacles.sltng
	· If / then (first use)

· Keyboard x?

· Up

· Down

· Set color

· Set size

· Math expression: equal, less than, greater than
	· Keyboard detect

· Boolean logic (if/then)
	Environment-agent
	Keyboard controls

	3
	Treasures and Hazards:

Explore breeds editor, setup, and collisions by modifying the setup section for first program and implement immobile “treasure” and “hazards.” Also experiment with different collision results.

Project files used:

obstacles.sltng

first program mod.sltng

Optional handout:

Treasure game design activity sheet
	· Create

· Setup

· Clear

· Scatter

· Collision

· Die

· Play sound

	· Multiple breeds

· Multiple agents of a breed

· Collisions

· My blocks palette

· Take out a block from a stack of blocks

· Insert a block into a stack of blocks
	Agent-Agent
	Set up initial conditions of a game

Game incentives and obstacles

NPCs

	4
	Forever and Procedures:

Implement version 1 of treasure hunt game – 1st person keyboard controls, random scatter of non-moving treasure and hazards, collision affects score.

Project files used:

treasure game review 4.sltng

obstacles.sltng

treasure game.sltng
	· Forever

· Procedure

· Score

· Math expressions: add and subtract

· Set score
	· Forever loop

· Keeping programming canvas organized

· Putting all parts together in new project – setup, forever, keyboard, multiple breeds, collisions

· Variable (built-in)
	Agent-agent
	Personalize the game – creative expression

	5
	Moving Enemies:

Implement moving enemy agents to increase difficulty.

Project files used:

treasure game review 5.sltng

treasure game.sltng
	· Random

· Say
	· Randomly moving agents

· Different behavior for different breeds

	Agent-agent
	Increase difficulty by using moving hazards

	6
	Terrain:

Use terrain editor to modify first program.

Project files used:

treasure game review 6.sltng

terrain practice.sltng

treasure game.sltng

Optional handouts:

How to use the draw tab.pdf

RGB values for color blocks
	· Stamp

· Yank

· Stomp

· Build

· Dig

	· Terrain editor

· Draw Tab

	Agent-environment

	Sculpt the terrain

Implement game features using terrain modifying commands.

	7
	Coordinate System:

Implement trigger-response game feature (e.g., if the player agent is on a blue patch, set the x and y coordinates of that agent to some random x and y coordinate).

Project files used:

treasure game review 7.sltng

treasure game.sltng
	· Set x, set y, set xy

· xcor, ycor

· Set heading
	· Coordinate system
	Agent-agent

Environment-agent
	Position agents in Spaceland in more precise ways.

	8
	Hatch:

Implement ‘shooting’ or ‘throwing’ game feature using the Hatch block.

Project files used:

treasure game review 8.sltng

treasure game.sltng
	· Hatch

· Set breed, breed
	· Breaking down complex behavior into smaller pieces to program
	Agent-agent
	Create new agents during game play (e.g., projectiles).

	9
	Variables:

Define and use a variable in the treasure game (e.g. keep track of the number of lives left of a player).

Project files used:

treasure game review 9.sltng

treasure game.sltng
	· Agent number

· Global number

· Slider

· Monitor

· Set variable
· variable
	· Distinguish between agent variables and global variables
	Agent-agent

	Common variables used in games are: keeping track of bullets used, lives left, number of treasures needed to win, energy of various agents, time left in the game, etc.

	10
	Wrap Up:

Add one more features to the game and create documentation – such as a play manual or comments for other programmers.

Project files used:

treasure game review 10.sltng

treasure game.sltng
	· Set agent camera

· ID

· Over shoulder

	· Write comments for other programmers to understand one’s code

· Write documentation for users to learn to play one’s game
	
	Documentation for playing the game

Teaching Notes by Lesson

Lesson 1: Basic Movement
This lesson has two main objectives: to introduce students to the look and feel of StarLogo TNG and to engage students in a fun and open-ended exploration programming activity. It is important to emphasize this latter point because it may be beyond the ability of the students to truly implement a successful programming solution if this is their first experience in programming. The programming activity asks the students to fill in a portion of the full program and only gives them a schematic of how their part fits in with the rest of the program. It is very likely for students to accidentally stumble upon a solution that “works” but may not necessarily understand why it works. Also, it may be tempting to prelude the activity with a lengthy teacher-directed explanation of how loops work, how the execution model works, how conditionals work, etc., but doing so will overwhelm the students and leave little time for them to get their hands “dirty” by just learning through trial and error/ self-exploration.
Leaving the first program open-ended may be a good way for the teacher to diagnose students’ ability levels and what misconceptions they might have. A major concept that is particularly difficult to understand is the execution model. Most of the students have an idea that they want the agents to stay on the high scoring patches for as long as possible by putting in a stack of many movement blocks like (forward 1) ((backward 1) ((forward 1) ((backward 1), etc. So they may not be aware that the score is only calculated based on the final positions of the agents after ALL of these instructions are executed during a given loop. Many students think that having all these blocks will make the agents “stay” on the desired color patches longer and thus increase their score. This misconception is addressed at the beginning of Lesson 2, so do not worry if you see many students struggling with this idea in the first lesson.

Also, many students may not have very good programming techniques, such as systematically making small incremental changes and testing each one to gradually reach an optimal solution. Most likely, the students will snap many blocks together, run their program, and repeat without much thought/reflection. Although they will be driven by the incentive to get a high score, they will not necessarily understand how their programming affects the score.

During the debrief time, it may be useful to ask students to share solutions that “worked” and ask the class to think about why a certain set of blocks worked to produce a high score. In order to challenge students to think about which blocks were essential in producing the desired outcome, ask them to think about what would happen if one or more blocks were removed. Alternatively, you can ask students to practice diagnosing potential problems and share solutions, modeling the systematic cycle of making small changes and testing.

Lesson 2: Keyboard Controls
This lesson is really fun for students because students learn to program a key game element – controlling an agent from the first person perspective. It builds naturally on the first lesson when student learned about movement blocks. Students are then challenged to program additional keyboard controls that are mapped to setting the player agent’s attributes in order to get past certain obstacles in a game-like environment. The programming challenge is once again designed so that students have a reason and incentive to program – namely, to collect all the treasure in the game.
Students may struggle to use the if/then statement to form a keyboard control, even after they have been given an example (If keyboard uparrow? Then forward 1). So, if needed, explain that the If/Then block is a way of mapping a particular keyboard key to a desired result – for example, “IF” I press the key b, “THEN” I want the agent to get bigger and have a size of 5.

While there are multiple ways of getting past the obstacles, there are some solutions that work better than others. You may want to have students share solutions asnd ask students to compare the solutions and evaluate how well they work.
Lesson 3: Treasures and Hazards
This lesson introduces students to the setup block, creating new breeds, and collisions. The first part is rather teacher-directed but effort was made to make it as interactive as possible. The point is that students should start to understand the importance of using the Setup block to set initial conditions of the game/project, such as setting the score to 0, clearing the agents from the previous run, and creating/scattering agents.

The teacher will guide students to use the breed editor to create a new breed and then create agents of that breed. The bulk of the programming time, however, should be for students to explore different options for collisions between breeds. Remind the students to use blocks they already know and even to try out blocks that they may not have learned yet such as stamp, build, say, play sound, etc.

Lesson 4: Forever and Procedures
In this lesson, students create the first versions of the treasure game, and will continue adding more complex elements to subsequent versions, as much as they can imagine and program. Students are also introduced to the Forever block, and learn how to define and call a procedure. Students continue practicing programming collisions and begin working with a built-in variable called score.
Lesson 5: Moving Enemies
This lesson has an extensive review to reinforce important programming concepts such as using an If block and defining/calling a procedure.
Students only learn a few new blocks and are introduced to the random block, a potentially very powerful block that can help them develop more interesting game elements. Students are given some examples of how to use random blocks but are also invited to come up with their own ideas for using random blocks in a movement procedure for the “enemy” agents.

Lesson 6: Terrain
Although modifying the terrain using the terrain editor and blocks is not central to the treasure hunt game, it is a fun and creative activity and also introduces the idea of agents interacting with the environment based on the color or other aspect of a patch. This is useful when students program “trigger-and-response” game elements, such as stepping on a particular color patch triggers some kind of response from the agent – whether it is something as simple as getting extra points or as complicated as hatching a new agent.
Lesson 7: Coordinate System

This lesson assumes that students are familiar with coordinate system notation (x, y), a common middle school math topic. This is a fairly important lesson because it gives the students a sense of the size of Spaceland and gives them the ability to precisely place and control the locations of agents. The most immediate application to students’ treasure games is to decide where they want their player agent to be located (and facing which direction) at the start of the game. Students also apply their cumulative knowledge by programming “trigger-and-response” game features, in which stepping on a certain color patch result in some kind of location change or direction change.
Solution to lesson 7 review, exercise 3, optional for advanced students:

[image: image2.png]

Alternate solution to lesson 7 review, exercise 3, optional for advanced students:

[image: image3.png]

Lesson 8: Hatch
Students love to implement some kind of “shooting” game feature and will probably have already asked how to do it prior to this lesson. A less violent-sounding game feature would be to “throw” something instead of shoot something. Implementing such a feature is a great way to synthesize and use everything students have learned. Students will (usually) need to create a breed for their projectile agents and program the projectile’s behavior and traits after it has been “hatched” from the player agent. Also, they will need to program the projectile’s collision with other agents, etc. An additional challenge is to figure out how to make the projectile’s motion more realistic by applying Newtonian motion physics. The challenge ceiling on this activity is quite high, and also encourages students to be creative.

Sample shooting code from guided programming exercise.

[image: image4.png]rwara, s I
e Turies

| P
oK 12 3

Solution for programming activity on how to make the projectiles “die” when they hit the edge of Spaceland:

[image: image5.png]

Lesson 9: Variables
Learning to define and use variables will open the door to a wide variety of game features. Students will struggle to understand the difference between an agent variable and a shared (global) variable. They may also struggle to understand the different data types, but this lesson primarily focuses on just the number type. Examples (e.g., in the PowerPoint presentations and programming exercises) are the best way to teach about variables and help students get comfortable with them.

Example of solution for challenge review exercise.
[image: image6.png]

Pulling a random number out of 100 is a natural solution because you can think in terms of percentages. So if you want to change from 50% chance of the condition evaluating to true, then you can just change the 50 to something else, like 25 for 25%, or 60 for 60%.
Lesson 10: Wrap Up

During the pilot implementation, we used the last lesson to identify specific final requests students have to improve their games. For instance, the student who had more than 1 player agent wanted to be able to switch views to a different player agent if one of them dies. So we created a slide that showed students how to use the smell list block and helped her implement the feature. As always, feel free to add or take away slides as desired. Other suggested activities for the wrap up lesson include creating documentation for users and comments for other programmers, and swapping projects with a partner and adding one more game feature to the partner’s project. In the pilot, we gave each student a USB flash drive with the StarLogo TNG software plus their project files and game manual to take home with them to show their family and friends.
Activities to introduce computer programming

Explain to students that computer programming is the process of planning and creating a sequence of steps for a computer to follow. The instructions have to be orderly, precise, and unambiguous to get the desired result. To show students how difficult this could be, and why programming is sometimes considered “hard,” you can try one of the following activities:

1. Make a copy of the Activity #1 on the next page and cut it up into separate pictures. Call one student to stand facing the class and give that student one of the pictures. Ask the student to describe the picture so that the rest of the class can duplicate the picture without seeing it, relying solely on the verbal instructions given. The student may not use any gestures. Afterwards, have everyone hold up their drawings and compare them with each other. Ask students, “Even though everyone heard the same directions, why do some people’s drawings look different from others? Does anyone’s drawing look exactly like the picture that the student described on the handout? Is it possible to give clear enough directions so that more people draw the exact picture?” Repeat with another drawing on the handout.

2. Organize students into small groups (if needed) and give each group a dozen index cards. Instruct groups to write one instruction on each card and arrange them in the correct order as directions for a blind person to put on a pair of sweat pants. One student can read the instructions step-by-step while the teacher follows the instructions literally. For one set of directions, pick up the pants by the ankles and then proceed to follow the students’ directions. For another set, pick up the pants so that it is turned around backwards and then follow the students’ directions.

3. Ask for three student volunteers and assign them these roles: brain, eyes, and robot. Blindfold the brain and the robot. The goal of the students is to find and pick up the red box (or some other object) in the classroom. The brain may ask the eyes only yes or no questions. Only the brain can give directions to the robot to follow. Only the robot can move but she/he cannot talk.

4. Borrow snap-cubes (or lego blocks, or color gumdrops and toothpicks) from a math teacher. Use about 10-12 cubes (or the other objects) to create a three-dimensional structure. Prepare sets of 15-20 cubes (same colors if possible) for as many groups of 3-4 students as there are. Hide the structure inside an open box that’s sitting on its side so that the structure can only be seen from one side. Each group member has a role: observer, communicator, and builder(s). The observer remains at the box containing the structure and is the only person who can see the structure. The communicator travels back and forth between the observer and the builder(s) to relay messages. The builder(s) are the only ones who can touch the cubes (or other objects). The goal is to replicate the structure exactly (you might want to specify if colors need to be exactly the same or not). Set a time limit.

Debrief the activity by asking students why it was challenging (see PowerPoint lesson 0). The activity can make two main points about programming:

1. It is difficult (but not impossible) to give clear, precise, and simple directions.

2. Computers are “dumb,” in that they cannot make inferences or interpret instructions like a human being. They can, however, process simple directions very quickly.

Explain that programming often involves breaking down a task into parts that can then be broken down even more until the instructions are as detailed and simple as possible. For example, if a task is to make a cake, you might want to break the task into three parts: make the batter, bake the cake, and decorate the cake. Each of these parts can then be broken down into smaller tasks: make the batter can consist of beating the eggs and the butter, stir in the flour and sugar, and pour the batter into a baking pan.

Activity #1 pictures
[image: image7.emf]
Reproducible - Treasure Game Design Activity Sheet
Name: _________________________________

Draw or write your ideas.
1. Brainstorm ideas for treasures and the winning objectives:

(Number, location, appearance, how score is affected)
2. Brainstorm ideas for hazards or obstacles that make the game challenging, interesting, or weird:

Reproducible - Lesson 1: Basic Movement
Open and Save

· File menu > Open project “first program.sltng”

· File menu > Save project as “first program your initials”
About First Program

· Setup: creates 20 turtle agents that are randomly scattered

· Run (loop): the turtles move forward 1, execute your instructions, calculate score
· Score: sum of the height of each agent

· Game ends after 60 seconds

Programming Activity

· Objective: Get the highest score possible in the game using as few blocks as possible.

· Program additional movement instructions (forward, back, left, right) when the turtles detect that they are on a particular color patch

· For example, how should the turtle behave if it detects that it is standing on a blue patch?
· Try out different commands and sequences; see what happens to the score each time. There are many ways to achieve a high score. Try to use as few blocks as possible.
· Every time you want to test out your program, click setup once (turtles created and scattered) and then run once (wait for green highlight around the run block).

· Use the blue slider bar to speed up or slow down the program.
[image: image14.png]

[image: image8.png]

[image: image9.png]"

0s

Reproducible - Lesson 2: Keyboard Controls
Open and Save

· File menu > Open project “obstacles.sltng”

· File menu > Save next version

About obstacles project:
· Terrain: maze / obstacle course

· Setup: creates 1 player agent that starts in a corner of the board; also creates “treasure” blocks and other agents that are obstacles (you’ll find out)

· Run: nothing happens yet

· Game ends when the player collects all the treasure.
Programming Activity 1

· Objective: program instructions to control the agent’s movement from the agent’s point of view (see example below):

· Up arrow key = move forward

· Left arrow key = turn left

· Right arrow key = turn right

· Down arrow key = move backward

· Click on Run in the Runtime window to test out the controls.
· Explore the terrain – What are the other agents in the world and what happens when you collide with them? What are some obstacles that keep you from getting treasure?

Programming Activity 2

· Objective: collect all treasure in the obstacle course
· Program additional keyboard controls to get past obstacles (see example below).

· Consult the reference guide for descriptions of NEW blocks that could be useful.
[image: image15.png]oo &

Edit Terran

[image: image16.png]

[image: image17.png]|

Belde ¢f
LY

8 ¥ 24

Reproducible - Lesson 3: Treasures and Hazards
Open and Save

· File menu > Open project “first program mod.sltng”

· File menu > Save next version

About the modified first program

· Setup: clears everyone, creates turtles that are randomly scattered, creates “treasure” agents and other agents that are non-moving hazards

· Run (forever): turtles move forward 1 space continually, forever
· Collisions: between turtles and treasure/hazards.

Guided programming 1 and 2
· In the existing setup block, attach the appropriate blocks to create 10-20 treasure agents and scatter them.

· Test out your new setup by clicking setup and then run in the runtime window.

· Drag a collision block that shows “treasure” and “turtles” onto the collisions section of the canvas
· Think: what do you want to happen when the turtle collides with the treasure?

· Explore different possible results for collision. Use blocks that you already know, such as set color, set size, movement blocks, die, and set score.

Programming Activity

· Create new breed for Hazards
· Add create and scatter hazards to setup.

· Think: what do you want to happen when the player collides with a hazard?

· Explore different possible results for collision.

[image: image18.png](AR 2

Edit Terain

[image: image10.png][Ciear Everyone

[scatter Turles,

[image: image19.png]

Reproducible - Lesson 4: Forever (run)
Open and Save

· File menu > Open Project > “treasure game”

· File menu > Save as > “treasure game your initials.sltng”
About the treasure game v1 project

· Setup: creates 1 player agent; creates treasure agents and non-moving hazards agents

· Run (forever): player agent(s) calls a procedure that executes movement when the player presses various keyboard keys to control the player agent from 1st person point of view
Guided Programming 1: Setup

· Breed Editor:

· Rename turtle agent to “player” and select a new character

· Make new agent called “treasure”

· Make new agent called “hazard”

· Drag setup block to setup section of canvas

· Attach “clear everyone” block

· Create 1 player agent

· Create treasure and hazard agents and randomly scatter them

· Click on setup in runtime window to check that the setup does what you want.

Guided Programming 2: Forever / Run

· Drag a Forever block to the runtime section of canvas.

· Rename the Forever block “Run.”

Guided Programming 3: Keyboard Controls Procedure

· Drag and connect a procedure block to player section of canvas

· Rename procedure “keyboard controls”

· Drag and connect the If/Then blocks to the procedure block
Programming Activities

· Implement collision results between the player and the treasure and hazard agents.

· Implement score-keeping. (Hint: don’t forget to attach the “show score” and “set score 0” blocks in the setup block!)

· [image: image20.png]

Explore different starting conditions. (Hint: you can have more than 1 setup block)

Reproducible - Lesson 5: Moving Enemies
Open and Save

· Open “treasure game your initials.sltng”

· Save next version

About the treasure game v2 project
· Setup: creates 1 player agent; creates treasure agent and non-moving hazards agents; creates moving “enemy” agents
· Run (forever): agents of player breed call a keyboard controls procedure; agents of “enemy” breed calls a “enemy movement” procedure

Guided Programming
· Create a new breed called “moving enemy” and select a shape for it.

· In the setup block, create 10 moving enemy agents and scatter them.

· Create a procedure called “Enemy movement” and just put one instruction “forward 1” for now.

· Call the procedure in the “moving enemy” section of the run block.

· Click setup in the runtime window. Before you click run, what do you think will happen when you click run? How will the enemy agents move? Now click run.

· Questions: What happens when the moving enemy agents hit the edge of the board? Is it hard or easy to avoid the enemy agent?
Programming Activity
· Program different movement instructions in the “enemy movement” procedure and see what happens. (Hint: Try using random)

· Implement collision results between the moving enemy and the player.

· [image: image21.png]

What can you do with a collision between an enemy agent and another enemy agent? Be creative!
Reproducible - Lesson 6: Terrain
Terrain Editor Practice

· File menu > Open project “terrain practice.sltng”

· Save next version

· Set up and Run the project once. Report your score.

· Use the terrain editor to make one change to the terrain in Spaceland. Predict how your change will affect the score.

· Set up and Run the game. How did your modifications affect the score?
· Challenge! In 10 minutes, design a terrain so that during one run of the game (full 30 sec) in which the turtles move forward 1 step forever, the score is as close to zero as possible.

· Your terrain should have some patches that are higher than 0 and some patches that are lower than 0.
Programming Activity

· Open the current version of your “treasure game your initials.sltng”

· Save next version

· Brainstorm ways to use Stamp, Build, Dig, Yank, and Stomp blocks in your treasure hunt game.

· How can you use them in collisions? Or as keyboard controls?

· Implement one or two of your ideas.

[image: image22.png]Aerial Agent Eye Agent View Overhead
:

44

Edit Terrain £

FPS5:45 VMPS: 8.6

[image: image23.png]STARLOGO TNG

WELCOME TO THE N

Documentation
] -
c Collision block
* Call
o Clear Al
o Clear Everyone Description:
« Clear Patches
o clock Constantly checks for collisions between agents. If a collision occurs, canses the colider to run the 1:Turtles cod
o collides 2:Turtles code. Which agentis the collidee and which is the collider depends on the block. For example, ifa Tur
 Colizion) block with "Turtles" as the first port and "Frogs" as the second port will assume that the Turtle s the colider and
* color
* color of Arguments:
* comment
o cos L.Turtles (commands): This is the code that the collider runs.
* count breeds
+ count breeds with 2Turtles (commands); This is the code that the collidee runs. The label of this port determines which breed wil b
* count everyone
* count everyone with Examples:
* Create Agents
o cyan —_—
lset Solor, 4. brown)
D Goliston) =
jsetcolor, /. red
o die
o dig
* down sets the collider's color to brown and the collidee's color to red.
* dpad angle

[image: image24.png]or Sno x|
Snow Ball 41

xcor

£ |yeor:

= |heading:
heicht:
size

color:

pendown: T
invisible:

energy:

[image: image25.png]

Reproducible - Lesson 7: Coordinate System

Guided Programming 1

· Open the current version of your “treasure game your initials.sltng”

· Save next version

· Use “set xy” and “set heading” in the setup block to place your player agent in a certain location facing a certain direction at the start of the game.

· You may need the Create [player agent] Do block.
[image: image11.png]

Guided Programming 2: Program interactions between the terrain and agents
· Example #1:

· Trigger: If the player agent steps on a blue patch,

· Response: a new treasure is created off to the side in front of the agent and the blue patch dies (gets “used up”).

· Example #2:

· Trigger: If enemy agents steps on a blue patch,

· Response: the enemy agents change direction (heading is randomly set).
Programming Activity

· Choose a trigger and response from the class brainstorm list or make one up of your own.

· Write it down on this activity sheet in this form: If… (trigger) then… (response).
· If ___

· Then __

· Implement your idea.

· TIP: Implement the idea one small step at a time, testing each step to make sure it works before going on to the next step.

Reproducible - Lesson 8: Hatch
Guided Programming: Implement a “shooting” feature

· Open the current version of your “treasure game your initials.sltng”

· Save next version
· What object (agent) do you want the player to shoot?
· How should the shot agent behave after it’s been shot?
· What do you want to happen when the shot agent collides with different agents in your game?
· What key should trigger the shot?
Programming Activity
· Find another use for the Hatch block in your game – for example, if two moving enemies collide, they can “hatch” a new moving enemy.

· Improve the real-world physics of shooting – for example, how can you make the shot agents die when they hit the edge of the board?
[image: image12.png]FPS: 3

Reproducible - Lesson 9: Variables
Guided Programming:

· Open the current version of your “treasure game your initials.sltng”

· Save next version

· Define an agent number variable called “energy” in the thrown projectile section of the canvas.

· When hatching the projectiles, set energy to 20.

· In the Run (forever) block, in the projectile’s section, decrease the energy variable by 1. If the energy is equal to 0, the projectile dies.

[image: image26.png]Aerial Agent Eye Agent View Overhead

Edit Terrain

Programming Activity

· Implement a new game element that uses at least one variable.

· Decide on the game element, consider which type of variable is most appropriate, and then follow the steps below.

· Three basic steps to using a variable:

1. Define the variable

2. Initialize the variable (setup, create, hatch)

3. Use the variable (change it, compare it, etc.)

[image: image27.png]

[image: image28.png]

Reproducible - Lesson 10: Wrap Up
Documentation for your game

· “How to Play” document/manual

· A few sentences on why the game is fun and what it is about

· Objective of game – how to win

· Keyboard controls

· Screen shots?

· Comments for other programmers

· Explain different parts of your program

Optional Programming Activity

· Open the current version of your “treasure game your initials.sltng”

· Save next version

· Swap computers w/ another classmate, play his or her game for a while, and program one more game feature to improve his or her game.

· Write comments describing any code that you added or changed.

To get StarLogo TNG for your home computer:

· Website: http://education.mit.edu/starlogo-tng/download
· Register, download, install

· On-line reference of blocks: http://education.mit.edu/starlogo-tng/documentation
[image: image13.png]Player.
Keyboard Controls, v

[image: image29.png]ishared number;

