LESSON 3:
PROGRAM A BUNNY (2 sessions)

Goals:
The goal of this programming project is for students to gain an understanding for how to build their own models. The program is relatively simple, and the activity should reinforce understanding of block commands that they already know and introduce them to new ones that they don’t. Additionally, the procedures that the rabbits are used in later models by various species, so learning them gives the students a better general understanding of how those models work, even though the later activities begin with the species preprogrammed. This activity is long and will likely take 2 sessions to complete.

Biology Concepts:

· Producers and primary consumers

· Predator-prey oscillations

· Food chain vs. food web

· Energy flow and loss/ conversion efficiency

· Procedures of the rabbit model (movement, growth, consumption, sense, reproduction, death)

StarLogoTNG Programming Concepts:
· Scatter agents

· Random

· Collisions

· Variables

· Die

· Hatch

· Smell

· Creating graphs

Materials:
· Starter code: 3-rabbits.sltng
· Student worksheet

· Projector/ computer for demo

· Blackboard/whiteboard/large paper for brainstorming
About the Model:
The starter code contains a simplified version of the carrot ecosystem where the only limiting factor is space and carrots grow up to carrying capacity. Once the rabbits are programmed, the rabbits and carrots exhibit classic oscillations in population size typical to predator-prey interactions. The following explanations describe the completed solution project.

SETUP:
The model begins with 100 “carrots” and 40 “rabbits” scattered around Spaceland. Carrots begin with a random age (1-10) and random energy (1-20), while rabbits begin with a random age (1-10) and random energy (1-50).

FOREVER:
Carrot procedures:
· Increase age +1

· Update visual height

· Produce energy +2 (if fewer than 10 carrots in radius 10)

· Reproduce (if energy > 20)

· Die (if age > 50)

Rabbit procedures:
· Turn toward any nearby carrots if possible and move forward 1 step.

· Increase age +1

· Decrease energy -0.5

· Reproduce (if age > 15 and energy > 15)

· Die (if age > 40 or no energy)

· Eat carrots during collisions (gain 50% of the carrot’s energy)

 GRAPH:
The graph shows the current carrot population divided in half (line 1) and the current rabbit population (line 2). The reason the carrot population is scaled is for an easier side-by-side comparison with the rabbit population.

Possible Modifications:
This lesson is structured such that each step teaches a new element to programming in StarLogoTNG. It is geared toward helping students understand the process of model building and giving confidence in their abilities to build such models.

However, if time is limited, you may choose to pre-program certain elements and focus on others. Procedures that you pre-program may be saved on the “Everyone” page. If time is really limited, while not recommended, you may still choose to forego the programming altogether and just use the model in the solutions project to observe predator-prey interactions.
Suggested Lesson Guide:
Part 1: Discussion
1 Review concepts from Lesson 1.

a) Assign driver/navigator pairs, get the students on the computers, and open the file.

b) Run the model with only the carrots. Is this behavior the same as last time? We have taken out all the factors except for crowding. Is this a reasonable simplification?

c) Return to the list from Lesson 1 on what makes up an ecosystem. Note that we are now going to address primary consumers.

d) Ask students to hypothesize how the growths of both populations will change over time when rabbits are added to the system.

2 How do we model a rabbit? What actions do rabbits perform on a regular basis?

a) Brainstorm a list on the board.

b) Note the ones that we will include in our model: aging, losing energy (metabolizing), eating carrots, moving, reproducing, dying.

Part 2: Activity
1 Begin guided programming worksheet activity.

a) Introduce each section of the worksheet with a discussion of how to the students would program this feature. Though the students may come up with suggestions that are either incompatible or too difficult to implement in the program, it is still good to get them into the mindset of being a programmer.

b) Perform each of the steps on the projector and discuss the changes as a class before asking students to implement individually. This keeps the class at a somewhat even pace and covers the nuances that students may miss.

c) If you feel students have a firm grasp on how to proceed, you may wish to let them continue with the worksheet on their own. However, it is recommended that this not be done until after the lesson on variables, which are historically difficult for students to understand. The explanation in the worksheet for variables makes an attempt to deliver a more intuitive understanding, but other analogies may work even better.

d) Constant feedback from the program after adding blocks as a group will provide ample opportunity to discuss programming concepts and debugging solutions. As an example, click “setup” immediately after creating a new breed and ask students where the new characters are. Some may notice that they don’t exist because they haven’t created them yet! This type of critical thinking and debugging logic will help students understand their own code as they progress.

2 Once the rabbits are complete, ask the students to observe the graph.

a) Was this the behavior between carrots and rabbit that was predicted?

b) Are the population cycles in sync? Why not?

3 If some students finish before others, challenge them to program something new into their model. This does not have to be anything too realistic, such as making their rabbits speak, but can help foster a sense of ownership and a higher level of comfort with the software.

Part 3: Debrief
1 Ask students what they learned from the activity (answers can be about the process of modeling, programming, StarLogo, ecosystems, etc.).

2 Discuss the model.

a) Which other rabbit actions that we brainstormed could be easily added to this model? How would you implement them in code?

b) What would happen if we added other elements into the model?

